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Figure S1. Critical micelle concentration (CMC) of nanoparticles. A range of nanoparticles
concentrations was incubated with PRODAN® and the ratio of fluorescent emissions in
hydrophobic phase/hydrophilic phases was plotted versus log(micelle concentration). CMC was
determined as a concentration at which the emission ratio begins to increase with polymer
concentration. The error bars represent standard error of measurements (n=3).

Bacteria Nanoparticles

Figure S2. Confirmation of free nanprtl attacment to S. mutans biofilms treated
surfaces. Bacteria within biofilms forming microcolonies are depicted in green (SYTO 9
labeled), nanoparticles are depicted in red (Texas Red labeled), and EPS in blue (AlexaFluor 647
labeled).
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Figure S3. Nanoparticle loading at a range of drug concentrations. A. Loading capacities and
B. loading efficiencies of nanoparticles. Blue data points denote loading capacities and
efficiencies at which biofilm treatments were performed (15 wt%, 97%). Error bars represent
standard error (n=3 independent experiments). As significant Pearson’s correlation (dotted line,
R>>0.86) between loading capacity and initial drug concentration at loading was determined by
two-tailed t-test on Pearson’s correlation (p<0.0001). The solid line in figure S4B is a guide to an
eye.

(=2}
(=}
1

N
o
1

Nanoparticle diameter (nm)
E =N
o

0 ) ] 1
0.0 0.5 1.0 1.5

Drug concentration at loading (mg/ml)

Figure S4. Increase in nanoparticle size upon loading. Nanoparticle sizes were examined by
dynamic light scattering (DLS) upon loading at a range of drug concentrations (0-1.5 mg/ml).
Error bars represent standard error of measurement (n=2).
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Figure S5. pH-responsive release of farnesol-loaded nanoparticles in adsorption buffer. A.
Farnesol release profiles at pH 7.2 and 4.5, including farnesol release rates (inset). Solid and
dotted lines show fits (R*>0.98) to first-order drug release and release rates determined by first
derivative of the fits (inset). B. Kinetic parameters of release determined from fits to first order
release (R*>>0.98). Initial release rate (A. inset, r,), release rate constant (k) and half-time of
release (t,,) at pH 4.5 suggest 2-fold faster release at pH 4.5 as compared to pH pH 7.2, similar to
data reported for PBS release experiments (Figure 3). Asterisks denote significant differences at
p<0.01, as determined by two-way ANOVA followed by Tukey’s test for multiple comparisons.
Adsorption buffer composition: 50 mM KCI, 1.0 mM KPO,, 1.0 mM CaCl,, 0.1 mM MgCl,, pH
6.5.
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Figure S6. pH-responsive mechanism of nanoparticle structure destabilization.
Nanoparticles demonstrate the pH-responsive structure destabilization at acidic pH. As a result
of exposure to extreme acidic pH, ~2-fold decrease in nanoparticle diameter was observed due to



protonation and repulsion of DMAEMA residues within nanoparticle coronas and cores. Error

bars represent SEM (n=5) and the asterisks denote as significant difference (p<0.001)
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Treatments

Figure S7. Treatment regimen during biofilm prevention assay. Biofilms were formed on

sHA surfaces, and treated with either farnesol-loaded nanoparticles (15 wt%) or controls using
clinically-relevant treatment regimen of 2-3 treatments per day.



